Informacije

Preporuka knjige za poznavanje i razumijevanje mozga i pojava i procesa povezanih s njim

Preporuka knjige za poznavanje i razumijevanje mozga i pojava i procesa povezanih s njim


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Trebam preporuku knjige ili, točnije, bilo kakvu preporuku izvora da bih znao i razumio više o fenomenima vezanim za mozak, koliko znamo kako mozak funkcionira. Zanima me sama struktura mozga i kako ona vodi do onoga što doživljavamo. Zbog načina na koji se biološki procesi odvijaju, kako su stvari koje definišemo za sebe povezane jedna s drugom. Bilo bi super ako bi to dodalo više biofizici tih procesa i mogućoj slici njihove evolucije, kao i fizičkim karakteristikama tih bioloških struktura.


Preporuka knjige za poznavanje i razumijevanje mozga i pojava i procesa u vezi s njim - Biologija

Razumijevanje mozga je od vitalnog značaja za psihologe zbog njegovog utjecaja na ponašanje i mentalna stanja.

Ciljevi učenja

Pratite istoriju nauke o mozgu u oblasti psihologije

Key Takeaways

Ključne točke

  • Psihologija je naučno proučavanje ponašanja i mentalnih procesa.
  • Neuroznanost pokazuje da je aktivnost u mozgu blisko isprepletena s ponašanjem i mentalnim procesima.
  • Dualizam je osporavana ideja da su um i tijelo zasebni entiteti i stoji nasuprot ideji da svijest može nastati iz čisto fizičkih procesa.
  • Lezije i druge moždane abnormalnosti mogu se koristiti za razumijevanje funkcija zdravog mozga i njihovog utjecaja na ponašanje.

Ključni uslovi

  • frenologija: Pseudoznanost prvenstveno fokusirana na mjerenja ljudske lubanje.
  • dualizam: Ideja da su um i tijelo dva odvojena entiteta koji su napravljeni od odvojenih supstanci, ali međusobno djeluju.
  • težak problem svesti: Pitanje kako čisto fizički procesi mogu dovesti do iskustva svijesti.
  • lezija: Bilo koja abnormalnost u tkivu organizma, obično uzrokovana bolešću ili traumom.

Psihologija i mozak

Psihologija se obično definira kao naučno proučavanje ponašanja i mentalnih procesa. Postoji od kraja 19. stoljeća, a 1879 se često navodi kao početni datum jer je tada osnovana prva laboratorija za psihološka istraživanja. Mnoge škole mišljenja u ovoj oblasti su došle i nestale od tada, neke su, poput biheviorizma, opstale i evoluirale ako su se suprotstavile naučnom proučavanju, druge su, poput frenologije, izblijedjele jer su izgubile kredibilitet.

Jedan pristup je tek počeo da uziva u 20. i 21. vijeku sa poboljšanjem naučnih istraživanja i tehnologije: proučavanje mozga. Neuronauka je relativno nova oblast, ali što se više istraživanja radi, to se više čini da je veći dio ljudskog ponašanja i mentalnih procesa – ključnih interesa za psihološko proučavanje – blisko isprepleten s aktivnostima u mozgu. Razumijevanje mozga važno je bez obzira na vrstu psihologije kojom se bavite, jer njegovi učinci prožimaju sve ljudsko ponašanje.

Istraživanje pomoću lezija

Lezije mozga: Iako je oštećenje mozga duboko nesretno, može pomoći istraživačima da shvate više o funkciji različitih dijelova mozga. Ova slika prikazuje lokaciju moždane lezije na lijevoj hemisferi zbog koje je pacijent doživio djelomičnu paralizu desnog bicepsa.

Proučavanje oštećenog mozga jedan je od najkorisnijih načina za povećanje razumijevanja veza između mozga i ponašanja. Lezija je opći izraz za bilo koju abnormalnost u tkivu, obično uzrokovanu bolešću ili traumom. Lezije su važne za proučavanje mozga i ponašanja jer ako psiholog vidi osobu s djelimično oštećenim mozgom, a zatim vidi promjene u ponašanju te osobe, te promjene ponašanja se često mogu pripisati oštećenju mozga. Na primjer, oštećenje dijela mozga koji se zove Brocino područje uzrokuje da pacijenti izgube sposobnost govora znajući to, možemo zaključiti da je taj dio mozga na neki način povezan s produkcijom jezika. To nam daje više informacija o neuroanatomiji, ali i o utjecaju mozga na ponašanje.

MRI lezije mozga: Kancerozna lezija (tj. tumor) u desnoj moždanoj hemisferi mozga od raka pluća, prikazana na T1-ponderiranoj magnetnoj rezonanciji sa intravenskim kontrastom.

Dualizam uma i tijela

Dualizam je ideja da su um i tijelo dva odvojena entiteta. Budući da je tijelo fizički entitet, a um nije, dugi niz stoljeća filozofi (a kasnije i psiholozi) obično su djelovali pod pretpostavkom da su tijelo i um različite vrste supstanci. Rene Descartes je poznat po teoriji da su um i tijelo odvojeni, budući da je mogao sumnjati da ima tijelo jer možda sanja, ali nije mogao sumnjati da ima um jer nešto čini sumnju. Dakle, središnja tvrdnja onoga što se naziva kartezijanski dualizam je da su um i tijelo dvije različite supstance koje međusobno djeluju.

Danas se vodi debata o tome da li su um i tijelo odvojeni materijali ili svijest može nastati iz čisto fizioloških procesa. Ovo je poznato u psihologiji, kognitivnoj nauci, filozofiji i veštačkoj inteligenciji kao težak problem svesti.


Zagonetke svesti

Filozofi se bave pitanjima do kojih nam je stalo, a za koja ne postoji specijalizirana - tipično empirijska - metodologija, kaže Derk Pereboom, profesorica filozofije i etike Susan Linn Sage i Stanford H. Taylor '50 predsjedavajući škole Sage. U psihologiji, dva od tih pitanja kojima se bavi filozofija su: koji je pravi model spoznaje i kako objašnjavamo svijest?

„Filozofija tu ima važnu ulogu, razvijajući modele za objašnjenje ovih pitanja“, kaže Pereboom.

Tema svijesti privukla je značajnu pažnju posljednjih godina. To je poznat fenomen, najintimnija stvar koju doživljavamo - da sve izgleda na određeni način i osjeća se na određeni način prema nama. Ipak, još od Sigmunda Frojda, postalo je uobičajeno vjerovati da se ispod naše svijesti odvija veliki dio pod- ili nesvjesnog procesa. Kao što Pereboom primjećuje, možda niste svjesni svog bijesa prema ocu, ali on i dalje ima efekta.

No, zapadnjački filozofi pristupili su pitanju svijesti na vrlo različite načine, primjećuje Yosef Washington '16. Kako je naučio na tečaju koji je pohađao s Lawrenceom McCreaom, profesorom azijskih studija, „neki su likovi u indijskoj filozofiji tvrdili da se osjećaj ja koji nazivamo sviješću više posmatra kao svjedok nego kao agent - mi smo više svjedoci svjesnom iskustvu nego zapravo agentima koji uzrokuju da se stvari dogode.”

Pereboomova posljednja knjiga, “Slobodna volja, djelovanje i smisao u životu” istražuje ovo povezano pitanje s pitanjem svijesti, pitanjem slobodne volje. "Ako su naši umovi samo fizičke stvari, tada se našim umovima upravlja ono što čini naš um, što je određeno pravilima fizike, pa ima li prostora za slobodan izbor?" Pita Pereboom.

Kako objašnjava, ako prethodni događaji čine naredne događaje neizbježnim, onda vraćanje u prošlost, način na koji je svemir bio prije vašeg rođenja, popravlja sve vaše izbore i postupke. Sve naše akcije bile bi uzročno određene. Da li bi onda bilo ispravno kriviti i kažnjavati ljude za njihove loše izbore, ili bi vjerovanje da su ljudi slobodni i njihovo moralno odgovaranje uključivalo grešku?

„Ako se sutra utvrdi da je determinizam istinit, tada biste znali da mozak zaista radi kao računar, da je sve to samo sistem ulaza sa specifičnim, fiksnim izlazima, a kasnije biste morali prihvatiti da nemamo slobodnih hoće li uopće ”, objašnjava Emma Logevall '17, studentica Pereboom -ove teme Filozofija uma: slobodna volja ovog semestra.


Zašto psiholozi proučavaju mozak i nervni sistem?

Psiholozi proučavaju mozak i nervni sistem jer su ti dijelovi tijela bitni za način na koji se ljudi ponašaju, misle i osjećaju. Psihologija je naučno proučavanje ponašanja ljudi i njihovog uma, pa će proučavanje mozga i nervnog sistema uvijek biti ključni element za psihološko proučavanje.

Studija iz 2013. sa Univerziteta u Virginiji otkrila je da je ljudski mozak povezan tako snažno s drugim ljudima da doživljava ono što drugi ljudi doživljavaju iako ne prolazi kroz isto iskustvo. To se pokazalo kada su sudionici prošli fMRI skeniranje mozga. Korelacija između sebe i prijatelja bila je jaka u studiji. Ovo je psihološki fenomen jer utiče na um i ponašanje osobe.

Proučavanje nervnog sistema znači proučavanje njegova dva glavna sistema: centralnog nervnog sistema, koji se sastoji od mozga i kičmene moždine, i moždane kore, koja je uključena u više kognitivne, emocionalne, senzorne i motoričke funkcije. Periferni nervni sistem je podeljen na dva dodatna podsistema. Ovi podsistemi su somatski nervni sistem i autonomni nervni sistem. Somatski nervni sistem ima primarnu funkciju regulacije djelovanja skeletnih mišića, dok autonomni nervni sistem radi na regulaciji nevoljne aktivnosti, kao što su otkucaji srca ili disanje.


Evo mojih izbora za najbolje knjige o psihologiji:

Posjedovanje vlastite sjene: razumijevanje tamne strane psihe
od Roberta Johnsona

Ova knjiga od 119 stranica nudi najbolje objašnjenje lične sjene koju možete pronaći u štampi. Sjena predstavlja sve dijelove nas samih od kojih smo nesvjesno odsječeni ili razvedeni. I ti odbačeni dijelovi su ono što tjera većinu našeg ponašanja izvan naše svijesti. Mnoge ideje u Owning Your Own Shadow inspirisale su moj vodič za početak rada u senci.

Čovjekova potraga za smislom
autor Viktor E. Frankl

Ne mogu zamisliti popis najboljih knjiga o psihologiji bez Franklovog klasika. Prvo sam pročitao Čovekova potraga za smislom u mojim ranim 20 -im. Ali nije znači bilo šta za mene sve do ponovnog čitanja u mojim tridesetim. Franklova zapažanja kao zatočenika u nacističkom koncentracionom logoru tokom Drugog svjetskog rata poučna su za svako ljudsko biće. Svi čitaoci će nakon čitanja ove knjige steći novu perspektivu svog života i onoga što ih pokreće.

Igre koje ljudi igraju: Osnovni priručnik za transakcionu analizu
od Erica Berna

Bernski klasik iz 60 -ih i danas je vrlo relevantan. Transakciona analiza ispituje ljudsko ponašanje kroz društvenu leću. Berne naglašava da u društvenim odnosima pojedinci utjelovljuju jedan od tri različita izraza ega: odrasla osoba, roditelj i dijete. Odrasla osoba je racionalna, roditelj kritičan i odgojan, dijete je zavisno i intuitivno. Sva tri izraza nalaze se u svakome od nas, a različite društvene situacije pokreću različite i u specifičnim kombinacijama. Igre koje ljudi igraju je fascinantno štivo ako vas zanima društvena dinamika i želite li postati svjesniji svog ponašanja.

On: Razumijevanje muške psihologije
od Robert Johnson

Svaki čovek treba da čita On. Džonson na 82 stranice objašnjava mušku psihologiju kroz mitologiju kralja Artura i legendu o gralu. Nisam siguran da bih to shvatio u svojim 20 -im ili ranim 30 -im. Ovu knjigu sam pročitao najmanje šest puta u tridesetim godinama. Cijenim On sve više kako starim. Svaka žena koja želi razumjeti mušku psihu također će imati koristi od ove knjige.

Ona: Razumijevanje ženske psihologije
od Robert Johnson

U ovoj sažetoj knjizi od 80 stranica, Johnson razbija žensku psihologiju kroz mitove o Psihi, Erosu i Afroditi. Čitanje Ona sa On rasvjetljava kako se psiha muškaraca i žena suštinski razlikuje. Zgodan vodič.

Mi: Razumijevanje psihologije romantične ljubavi
od Roberta Johnsona

Kako uopće možete pokušati biti u vezi bez čitanja Mi?? Svi smo toliko programirani idejama o romantičnoj ljubavi iz priča, filmova i medija, da je ljudski odnos jedva moguć. Johnson dekonstruira romantičnu ljubav kroz mit o Tristanu i Iseultu. Johnson ’s Mi je knjiga koju morate pročitati za sve koji pokušavaju imati svjesnu vezu ili brak. Nevjerojatno otrežnjujuće i poučno.

Kralj, ratnik, mađioničar, ljubavnik: Ponovno otkrivanje arhetipova zrelog muškog roda
autori Robert Moore i Douglas Gillette

Wow! Ako želite razumjeti ljudsko ponašanje, pročitajte ovu knjigu (obično se naziva KWML). KWML divlja vožnja u psihu. Upoznat ćete cijeli niz likova, ali prava priča nije o Velikoj četvorci spomenutoj u naslovu, već o njihovim bipolarnim parnjacima u sjeni. Upoznavanjem i razumijevanjem ovih mračnijih arhetipova počinjemo cijeniti sile koje vladaju većinom ljudskog ponašanja. Za sve zainteresovane za psihologiju i ljudsko ponašanje, stavite KWML na svoju listu.

Počnite gdje jeste: Vodič za saosjećajan život
od Pema Chodren

Što se tiče zapadne psihologije u posljednjih 120 -ak godina, istočna psihologija je hiljadama godina starija. Počnite gdje ste zasniva se na onome što se zove Lojong to je staro najmanje 300 godina. Ova praksa treninga uma zasnovana je na 59 slogana ili aforizama koji demonstriraju briljantnost budističke psihologije. I Chodren, zapadni budistički učitelj, radi lijep posao objašnjavajući značenje ovih aforizama.

Samoterapija: Vodič korak po korak za stvaranje cjelovitosti i iscjeljenje vašeg unutrašnjeg djeteta pomoću IFS-a
od Jay Earley

U našoj psihi imamo glasove, dijelove ili podličnosti.

Kada negiramo ovu činjenicu, ti dijelovi vladaju nama. Kad to prihvatimo, možemo naučiti razumjeti i uskladiti likove u našoj psihi. Self-Therapy zasniva se na modernijoj integrativnoj terapiji pod nazivom Interni porodični sistemi (ili IFS). Vodi vas korak po korak kroz proces rada sa vašim dijelovima. Moj vodič o psihologiji arhetipova pruža osnovu za korištenje ovog priručnika.

Mudrost Enneagrama: Potpuni vodič za psihološki i duhovni rast devet tipova ličnosti
Don Richard Riso i Russ Hudson

U dvije decenije osobnog treniranja istražio sam većinu, ako ne i sve, psihološke procjene na tržištu (Myers-Briggs, DISC, itd.). Iz moje perspektive, Enneagram je najrobilniji i najfunkcionalniji model ličnosti. A od mnogih knjiga koje sam pročitao o ovom psihološkom sistemu, Mudrost Eneagrama ovaj je najpraktičniji i najpristupačniji.

Unutrašnje zlato: Razumijevanje psihološke projekcije
od Robert Johnson

Zasnovao sam svoj vodič o psihološkoj projekciji na ovoj maloj knjizi o tome kako smo skloni da najbolje dijelove sebe projiciramo na druge. Ovaj proces se događa nesvjesno, tako da prvo moramo postati svjesni onoga što radimo prije nego što možemo vratiti svoje projekcije i posjedovati svoju pravu moć. Unutrašnje zlato pokazaće vam put.


Kako studirati za MCAT u 2 mjeseca

Kreiranje vašeg vodiča za učenje MCAT može biti jedan od najvažnijih, ali najizazovnijih aspekata pripreme za MCAT. Prema AAMC-u, prosječni student predmedicinske medicine trebao bi provesti oko 240 sati pripremajući se za MCAT tokom tri mjeseca. Kao službena priprema za MCAT AMSA-e, Kaplan preporučuje da provedete 300-350 sati učeći kako biste bili iznad prosjeka. Ako planirate polaganje MCAT -a za dva mjeseca, morat ćete odvojiti značajnu količinu vremena za učenje svake sedmice kako biste mogli postići konkurentne bodove.
[POVEZANO: 1-mjesečni MCAT studijski vodič ]
Prije nego započnete, morat ćete okupiti materijale za učenje. Evo naše preporučene liste:

Nabavite vlastitu kopiju dvomjesečnog studijskog plana Kaplan ’s za MCAT & gt

MCAT Study Essentials

AAMC -ov MCAT Essentials Vodič

Morate pregledati službene MCAT podatke u Essentials Guide prije nego što se registrirate za MCAT. Pun je informacija o testu, uključujući logistiku, sadržaj i vrijeme. The Osnovni vodič je odlično mjesto za početak pripreme za MCAT.

AAMC testovi pune dužine

Četiri kompletna online vježbanja testa dostupna su za kupovinu na web stranici MCAT-a.

Primjeri pitanja i odjeljaka AAMC -a

Dva različita paketa praktičnih pitanja dostupna su na web stranici AAMC -a. Zvanična banka MCAT odjeljaka ima 300 praktičnih pitanja u tri paketa odjeljaka (prirodne nauke, nauke o ponašanju i društvene nauke). Službeni MCAT paketi pitanja sadrže odlomke i pitanja iz penzionisanih MCAT testova koji pokrivaju biologiju, fiziku, hemiju i vještine kritičke analize i zaključivanja (CARS).

MCAT Practice Questions

Kaplanova MCAT QBank štedi vam vrijeme s ciljanim pitanjima. Uz detaljna objašnjenja, naučit ćete na svojim greškama i povećati rezultat.

Kaplanov MCAT kompletan pregled predmeta od 7 knjiga + online resursi

Uz Kaplanove MCAT knjige, ne samo da dobijate štampane izvore koji pokrivaju temu iz svih odjeljaka testa, već i pristup tri cjelovita praktična testa na mreži i dodatnim naučnim video zapisima. Komplet knjiga je vrijedan samo za ove testove, jer oni pružaju realnu praksu koja uključuje mjerljive ocjene i percentile za svaki odjeljak, kao i detaljna objašnjenja za svako pitanje. Dodatno, Kaplanova MCAT 528 Advanced Prep Book i mrežni izvori dodatno će vas pripremiti.

Online Kalendar

Kreiranje online kalendara učenja je korisno za praćenje vašeg ličnog plana učenja s gotovo bilo kojeg mjesta. A ako svoj kalendar podijelite s drugima, oni vam mogu pomoći da budete odgovorni kako biste ostali u toku sa svojim učenjem.

Flash kartice (uključujući online aplikaciju)

Kartice su savršene za pomoć pri ulasku u vrijeme učenja za samo nekoliko minuta. Kaplan nudi i aplikaciju Flashcard koja se može preuzeti i paket primenljivih flash kartica za trenutni MCAT.

Idite na čas

Ako ste obeshrabreni idejom da studirate potpuno sami, kao i izazovom sastavljanja potpunog rasporeda studija, razmislite o pohađanju nastave kao što je Kaplan ’s MCAT Prep. Nude se i online časovi uživo i samostalni časovi kako bi vam pomogli da pokrijete vještine i strategije koje će vam trebati da zaradite konkurentan rezultat na MCAT-u, a plan učenja kursa će vam pomoći da odredite šta biste trebali učiti, kada biste trebali polagati testove za vježbu i kako sve to spojiti za Test Day.

1. sedmica

  • Započnite pripremu za MCAT polaganjem testa za vježbu ili skupom pitanja koji pokriva sve teme na MCAT-u. To će vam pomoći da se upoznate sa strukturom i sadržajem testa i uspostavite svoje osnovne performanse. MCAT Sample Test je odličan resurs za ovo. Kaplan također ima besplatne internetske vježbe i 3 cjelovita testa uključena u Kaplan MCAT knjige.
  • Nakon što ste položili prvi test vježbe i stekli dijagnostički rezultat, pomoću svojih rezultata odredite na kojim područjima MCAT sadržaja trebate najviše raditi. Vaš rezultat testa bi se trebao koristiti za modifikaciju plana učenja u nastavku kako bi zadovoljio vaše potrebe. Na primjer, ako ste se dobro snašli u svim pitanjima endokrinog sistema i imunologiji, mogli biste samo kratko proučiti te teme i usmjeriti više svoje energije na predmete iz biologije s kojima se niste dobro snašli, poput ćelijske biologije i genetike.
  • Izradite personalizirani tjedni raspored učenja. Proaktivno popunjavajte svoj kalendar blokovima za učenje, planirajući da učite najmanje tri sata dnevno, šest dana u sedmici. Stavite određene teme za učenje u svaki blok kako biste dobro iskoristili svoje vrijeme i osigurali da imate dovoljno vremena za pripreme. Dajte sebi slobodan dan za učenje svake sedmice kako biste imali vremena da se napunite.
  • Postavite rotirajući raspored koji funkcionira kroz ove teme:
    • Biochemistry
    • Biology
    • Opšta hemija
    • Organska hemija
    • Fizika/Matematika
    • Bihevioralne nauke

    Počnite s osnovama svakog predmetnog područja i svaki dan se fokusirajte na drugu temu. Da biste se zaista usredotočili, želite potrošiti najmanje sat do sat i pol na svaku temu učenja. Evo uzorka kalendara kako bi mogla izgledati vaša prva sedmica učenja:

    NedjeljaPonedeljakUtorakSrijedačetvrtakpetakSubota
    Test pune dužineTestiranje i planiranje studijaBiologija, Biokemija, CARSOpća hemija, organska hemija, AUTOMOBILAFizika, psihologija i sociologija, CARSPonovno posjetite problematična područja i izmijenite Studijski planSlobodan dan
    • Biologija: ćelijska biologija
    • Biokemija: aminokiseline, peptidi i proteini
    • Opšta hemija: struktura atoma i periodni sistem
    • Organska hemija: Nomenklatura
    • Fizika: Dimenzionalna analiza, osnovna matematika i statistika
    • Psihologija i sociologija: biološke osnove ponašanja
    • AUTOMOBILI: Čitanje radi pronalaženja najvažnijih informacija

    Sedmice 2-5

    • Rotirajuće blokove studijskog vremena posvetite biokemiji, biologiji, općoj kemiji, organskoj kemiji, fizici i bihevioralnim znanostima.
    • Upotrijebite uzorke pitanja i odjeljke AAMC -a i odaberite odlomke na temelju područja sadržaja koje ste pregledali za realnu testnu praksu.
    • Osim toga, nastavite svakodnevno učiti za odjeljak Kritička analiza i rasuđivanje (CARS). Uzorke pitanja i odjeljke AAMC-a koristite za čitanje odlomaka i rad na pitanjima vezanim uz odlomke.

    Budući da vjerovatno imate već postojeće obaveze, morat ćete pažljivo i promišljeno organizirati svoje blokove za učenje. Nekih dana možda ćete imati vremena za proučavanje više od jedne teme drugim danima, možda ćete imati vremena za proučavanje samo jedne teme. Ne zaboravite da CARS postane dnevni prioritet. Primjer sedmice može izgledati otprilike ovako:


    Kako ljudi uče: mozak, um, iskustvo i škola: prošireno izdanje (2000.)

    Brzina kojom se nauka razvija ponekad djeluje alarmantno sporo, a nestrpljenje i nade postaju sve veće kada se diskusije okrenu pitanjima učenja i obrazovanja. U oblasti učenja, proteklih četvrt veka je bilo period velikog istraživačkog napretka. Zbog mnogih novih dostignuća, studije koje su rezultirale ovim brojem provedene su kako bi se procijenila baza naučnog znanja o ljudskom učenju i njegovoj primjeni u obrazovanju. Vrednovali smo najbolje i najnovije naučne podatke o učenju, nastavi i okruženju za učenje. Cilj analize bio je utvrditi šta je potrebno da učenici steknu duboko razumijevanje, utvrditi šta dovodi do efikasne nastave i procijeniti uslove koji vode do poticajnog okruženja za podučavanje i učenje.

    Naučno razumijevanje učenja uključuje razumijevanje procesa učenja, okruženja za učenje, podučavanja, sociokulturnih procesa i mnogih drugih faktora koji doprinose učenju. Istraživanje o svim ovim temama, kako na terenu tako i u laboratorijima, pruža temeljnu bazu znanja za razumijevanje i provođenje promjena u obrazovanju.

    U ovom svesku raspravlja se o istraživanjima u šest područja koja su relevantna za dublje razumijevanje procesa učenja učenika i učenika: uloga prethodnog znanja u učenju, plastičnost i srodna pitanja ranog iskustva u razvoju mozga, učenje kao aktivan proces, učenje radi razumijevanja, prilagodljiva stručnost , a učenje kao dugotrajan poduhvat. U njemu se razmatraju istraživanja u pet dodatnih područja koja su relevantna za nastavu i okruženja koja podržavaju učinkovito učenje: važnost društvenog i kulturnog konteksta, transfer i uvjeti za široku primjenu učenja, jedinstvenost predmeta, ocjenjivanje za podršku učenju i novo obrazovno tehnologijama.

    UČITELJI I UČENJE

    Kompetencije za razvoj i učenje

    Djeca se rađaju s određenim biološkim sposobnostima za učenje. Oni mogu prepoznati ljudske zvukove mogu razlikovati žive od neživih objekata i imaju inherentan osjećaj za prostor, kretanje, broj i uzročnost. Ove sirove kapacitete ljudskog odojčeta aktuelizuje okruženje koje okružuje novorođenče. Okruženje pruža informacije, što je jednako važno, daje strukturu informacijama, kao kad roditelji skreću pažnju djetetu na zvukove njegovog ili njegovog maternjeg jezika.

    Dakle, razvojni procesi uključuju interakciju između ranih kompetencija djece i njihove podrške u okolini i međuljudskim odnosima. Ove potpore služe za jačanje kapaciteta koji su relevantni za dječje okruženje i za orezivanje onih koji to nisu. Učenje promovira i regulira biologija djece&rsquos i njihovo okruženje. Mozak djeteta u razvoju je proizvod, na molekularnom nivou, interakcije između bioloških i ekoloških faktora. Um se stvara u ovom procesu.

    Termin &ldquodvelopment&rdquo je ključan za razumijevanje promjena u konceptualnom rastu djece&rsquos. Kognitivne promjene nisu rezultat pukog prikupljanja informacija, već su posljedica procesa uključenih u konceptualnu reorganizaciju. Istraživanja iz mnogih područja donijela su ključne nalaze o tome kako se rane kognitivne sposobnosti odnose na učenje. Ovo uključuje sljedeće:

    &ldquoPrivilegirani domeni:&rdquo Mala djeca se aktivno bave osmišljavanjem svog svijeta. U nekim domenima, najočiglednije jeziku, ali i zbog biološke i fizičke uzročnosti i broja, čini se da su predisponirani za učenje.

    Djeca su neuka, ali nisu glupa: Maloj djeci nedostaje znanje, ali oni imaju sposobnost urazumiti znanje koje razumiju.

    Djeca rješavaju probleme i, kroz radoznalost, stvaraju pitanja i probleme: Djeca pokušavaju riješiti probleme koji su im predstavljeni, a također traže nove izazove. Ustraju jer su uspjeh i razumijevanje sami po sebi motivirajući.

    Djeca rano razvijaju znanje o vlastitim sposobnostima učenja i meta spoznaji. Ovaj metakognitivni kapacitet daje im mogućnost planiranja i praćenja svog uspjeha i ispravljanja grešaka kada je to potrebno.

    Prirodne sposobnosti djece zahtijevaju pomoć pri učenju: rani kapaciteti djece zavise od katalizatora i posredovanja. Odrasli igraju ključnu ulogu u promicanju dječje znatiželje i upornosti usmjeravajući dječju pažnju, strukturirajući njihova iskustva, podržavajući njihovo

    pokušaje učenja i reguliranje složenosti i težine nivoa informacija za njih.

    Neurokognitivna istraživanja donijela su dokaze da su se i razvojni i zreli mozak strukturno promijenili tokom učenja. Na primjer, težina i debljina cerebralnog korteksa štakora se mijenja kada imaju direktan kontakt sa stimulativnim fizičkim okruženjem i interaktivnom društvenom grupom. Struktura samih živčanih stanica je na odgovarajući način promijenjena: pod nekim uvjetima mogu se promijeniti i ćelije koje pružaju podršku neuronima i kapilare koje opskrbljuju krv živčanim stanicama. Čini se da učenje specifičnih zadataka mijenja specifična područja mozga koja odgovaraju tom zadatku. Kod ljudi, na primjer, reorganizacija mozga je dokazana u jezičnim funkcijama gluhih osoba, kod rehabilitiranih pacijenata sa moždanim udarom i u vidnom korteksu ljudi koji su slijepi od rođenja. Ovi nalazi ukazuju na to da je mozak dinamičan organ, oblikovan u velikoj mjeri iskustvom i onim što živo biće radi.

    Transfer učenja

    Glavni cilj školovanja je pripremiti učenike za fleksibilnu prilagodbu novim problemima i okruženjima. Sposobnost učenika da rsquo prenose naučeno u nove situacije pruža važan pokazatelj prilagodljivog, fleksibilnog učenja vidjevši koliko dobro to rade može pomoći nastavnicima u procjeni i poboljšanju nastave. Mnogi pristupi poučavanju izgledaju ekvivalentno kada je jedino mjerilo učenja pamćenje na činjenice koje su posebno iznesene. Razlike u nastavi postaju očiglednije kada se evaluiraju iz perspektive koliko dobro se učenje prenosi na nove probleme i okruženja. Transfer se može istražiti na različitim nivoima, uključujući prijenos s jednog skupa koncepata na drugi, iz jednog školskog predmeta u drugi, iz jedne godine škole u drugu, te kroz školske i svakodnevne, vanškolske aktivnosti.

    Sposobnost ljudi i rsquos da prenesu ono što su naučili zavisi od brojnih faktora:

    Ljudi moraju postići prag početnog učenja koji je dovoljan da podrži transfer. Ova očigledna tačka često se zanemaruje i može dovesti do pogrešnih zaključaka o djelotvornosti različitih pristupa poučavanju. Potrebno je vrijeme za učenje složenih predmeta, a procjene prijenosa moraju uzeti u obzir stupanj u kojem je originalno učenje sa razumijevanjem postignuto.

    Trošenje puno vremena (& ldquotime na zadatku & rdquo) samo po sebi nije dovoljno za osiguravanje efikasnog učenja. Za vježbanje i upoznavanje sa temom potrebno je vrijeme, ali najvažnije je kako ljudi koriste vrijeme

    učenje. Koncepti kao što je & ldquodeliberate practice & rdquo naglašavaju važnost pomaganja studentima u praćenju učenja tako da traže povratnu informaciju i aktivno procjenjuju svoje strategije i trenutni nivo razumijevanja. Takve se aktivnosti jako razlikuju od jednostavnog čitanja i ponovnog čitanja teksta.

    Učenje s razumijevanjem će vjerovatno promicati prijenos nego jednostavno pamćenje informacija iz teksta ili predavanja. Mnoge aktivnosti u učionici naglašavaju važnost pamćenja u odnosu na učenje s razumijevanjem. Mnogi se također fokusiraju na činjenice i detalje, a ne na šire teme uzroka i posljedica događaja. Nedostaci ovih pristupa nisu očigledni ako jedini test učenja uključuje testove pamćenja, ali kada se mjeri prijenos učenja, vjerovatno će se otkriti prednosti učenja s razumijevanjem.

    Znanje koje se predaje u različitim kontekstima vjerojatnije će podržati fleksibilan prijenos od znanja koje se uči u jednom kontekstu. Informacije mogu postati & ldquocontext-vezane & rdquo ako se poučavaju primjerima specifičnim za kontekst. Kada se materijal predaje u više konteksta, veća je vjerojatnost da će ljudi izvući relevantne značajke pojmova i razviti fleksibilniji prikaz znanja koje se može koristiti općenitije.

    Studenti razvijaju fleksibilno razumijevanje kada, gdje, zašto i kako koristiti svoje znanje za rješavanje novih problema ako nauče kako izvući temeljne teme i principe iz svojih vježbi učenja. Razumijevanje kako i kada koristiti znanje i poznato kao uvjeti primjenjivosti je važna karakteristika stručnosti. Učenje u više konteksta najvjerovatnije utiče na ovaj aspekt transfera.

    Prijenos učenja je aktivan proces. Učenje i transfer ne bi trebali biti evaluirani &ldquoone-shot&rdquo testovima transfera. Alternativni pristup ocjenjivanju je razmotriti kako učenje utječe na kasnije učenje, poput povećane brzine učenja u novom domenu. Često se dokazi o pozitivnom prijenosu ne pojavljuju sve dok ljudi nisu imali priliku naučiti o novoj domeni, a zatim se dogodi transfer i to je evidentno u sposobnosti učenika da brže shvate nove informacije.

    Cijelo učenje uključuje prijenos iz prethodnih iskustava. Čak i početno učenje uključuje transfer koji se zasniva na prethodnim iskustvima i prethodnim znanjima. Prijenos nije jednostavno nešto što se može, a i ne mora pojaviti nakon početnog učenja. Na primjer, učenici ne mogu automatski aktivirati znanje relevantno za određeni zadatak i ne mogu poslužiti kao izvor pozitivnog prijenosa za učenje novih informacija. Učinkoviti nastavnici pokušavaju podržati pozitivan transfer tako što aktivno identificiraju snage koje učenici donose u situaciji učenja i nadograđuju je, gradeći tako mostove između znanja učenika i učenika i ciljeva učenja koje je postavio nastavnik.

    Ponekad znanje koje ljudi donose u novu situaciju ometa kasnije učenje jer vodi razmišljanje u pogrešnim smjerovima.

    Na primjer, mala djeca&rsquos poznavanje svakodnevne aritmetike zasnovane na brojanju može im otežati bavljenje racionalnim brojevima (veći broj u brojniku razlomka ne znači isto što i veći broj u nazivniku) pretpostavkama zasnovanim na svakodnevna fizička iskustva mogu otežati učenicima razumijevanje pojmova fizike (misle da stijena pada brže od lista jer svakodnevna iskustva uključuju druge varijable, poput otpora, koje nisu prisutne u uvjetima vakuuma koje fizičari proučavaju) itd. . In these kinds of situations, teachers must help students change their original conceptions rather than simply use the misconceptions as a basis for further understanding or leaving new material unconnected to current understanding.

    Competent and Expert Performance

    Cognitive science research has helped us understand how learners develop a knowledge base as they learn. An individual moves from being a novice in a subject area toward developing competency in that area through a series of learning processes. An understanding of the structure of knowledge provides guidelines for ways to assist learners acquire a knowledge base effectively and efficiently. Eight factors affect the development of expertise and competent performance:

    Relevant knowledge helps people organize information in ways that support their abilities to remember.

    Learners do not always relate the knowledge they possess to new tasks, despite its potential relevance. This &ldquodisconnect&rdquo has important implications for understanding differences between usable knowledge (which is the kind of knowledge that experts have developed) and less-organized knowledge, which tends to remain &ldquoinert.&rdquo

    Relevant knowledge helps people to go beyond the information given and to think in problem representations, to engage in the mental work of making inferences, and to relate various kinds of information for the purpose of drawing conclusions.

    An important way that knowledge affects performances is through its influences on people&rsquos representations of problems and situations. Different representations of the same problem can make it easy, difficult, or impossible to solve.

    The sophisticated problem representations of experts are the result of well-organized knowledge structures. Experts know the conditions of applicability of their knowledge, and they are able to access the relevant knowledge with considerable ease.

    Different domains of knowledge, such as science, mathematics, and history, have different organizing properties. It follows, therefore, that to

    have an in-depth grasp of an area requires knowledge about both the content of the subject and the broader structural organization of the subject.

    Competent learners and problem solvers monitor and regulate their own processing and change their strategies as necessary. They are able to make estimates and &ldquoeducated guesses.&rdquo

    The study of ordinary people under everyday cognition provides valuable information about competent cognitive performances in routine settings. Like the work of experts, everyday competencies are supported by sets of tools and social norms that allow people to perform tasks in specific contexts that they often cannot perform elsewhere.

    Zaključci

    Everyone has understanding, resources, and interests on which to build. Learning a topic does not begin from knowing nothing to learning that is based on entirely new information. Many kinds of learning require transforming existing understanding, especially when one&rsquos understanding needs to be applied in new situations. Teachers have a critical role in assisting learners to engage their understanding, building on learners&rsquo understandings, correcting misconceptions, and observing and engaging with learners during the processes of learning.

    This view of the interactions of learners with one another and with teachers derives from generalizations about learning mechanisms and the conditions that promote understanding. It begins with the obvious: learning is embedded in many contexts. The most effective learning occurs when learners transport what they have learned to various and diverse new situations. This view of learning also includes the not so obvious: young learners arrive at school with prior knowledge that can facilitate or impede learning. The implications for schooling are many, not the least of which is that teachers must address the multiple levels of knowledge and perspectives of children&rsquos prior knowledge, with all of its inaccuracies and misconceptions.

    Effective comprehension and thinking require a coherent understanding of the organizing principles in any subject matter understanding the essential features of the problems of various school subjects will lead to better reasoning and problem solving early competencies are foundational to later complex learning self-regulatory processes enable self-monitoring and control of learning processes by learners themselves.

    Transfer and wide application of learning are most likely to occur when learners achieve an organized and coherent understanding of the material when the situations for transfer share the structure of the original

    learning when the subject matter has been mastered and practiced when subject domains overlap and share cognitive elements when instruction includes specific attention to underlying principles and when instruction explicitly and directly emphasizes transfer.

    Learning and understanding can be facilitated in learners by emphasizing organized, coherent bodies of knowledge (in which specific facts and details are embedded), by helping learners learn how to transfer their learning, and by helping them use what they learn.

    In-depth understanding requires detailed knowledge of the facts within a domain. The key attribute of expertise is a detailed and organized understanding of the important facts within a specific domain. Education needs to provide children with sufficient mastery of the details of particular subject matters so that they have a foundation for further exploration within those domains.

    Expertise can be promoted in learners. The predominant indicator of expert status is the amount of time spent learning and working in a subject area to gain mastery of the content. Secondarily, the more one knows about a subject, the easier it is to learn additional knowledge.

    TEACHERS AND TEACHING

    The portrait we have sketched of human learning and cognition emphasizes learning for in-depth comprehension. The major ideas that have transformed understanding of learning also have implications for teaching.

    Teaching for In-Depth Learning

    Traditional education has tended to emphasize memorization and mastery of text. Research on the development of expertise, however, indicates that more than a set of general problem-solving skills or memory for an array of facts is necessary to achieve deep understanding. Expertise requires well-organized knowledge of concepts, principles, and procedures of inquiry. Various subject disciplines are organized differently and require an array of approaches to inquiry. We presented a discussion of the three subject areas of history, mathematics, and science learning to illustrate how the structure of the knowledge domain guides both learning and teaching.

    Proponents of the new approaches to teaching engage students in a variety of different activities for constructing a knowledge base in the subject domain. Such approaches involve both a set of facts and clearly defined principles. The teacher&rsquos goal is to develop students&rsquo understanding of a given topic, as well as to help them develop into independent and thoughtful problem solvers. One way to do this is by showing students that they already have relevant knowledge. As students work through different prob-

    lems that a teacher presents, they develop their understanding into principles that govern the topic.

    In mathematics for younger (first- and second-grade) students, for example, cognitively guided instruction uses a variety of classroom activities to bring number and counting principles into students&rsquo awareness, including snack-time sharing for fractions, lunch count for number, and attendance for part-whole relationships. Through these activities, a teacher has many opportunities to observe what students know and how they approach solutions to problems, to introduce common misconceptions to challenge students&rsquo thinking, and to present more advanced discussions when the students are ready.

    For older students, model-based reasoning in mathematics is an effective approach. Beginning with the building of physical models, this approach develops abstract symbol system-based models, such as algebraic equations or geometry-based solutions. Model-based approaches entail selecting and exploring the properties of a model and then applying the model to answer a question that interests the student. This important approach emphasizes understanding over routine memorization and provides students with a learning tool that enables them to figure out new solutions as old ones become obsolete.

    These new approaches to mathematics operate from knowledge that learning involves extending understanding to new situations, a guiding principle of transfer (Chapter 3) that young children come to school with early mathematics concepts (Chapter 4) that learners cannot always identify and call up relevant knowledge (Chapters 2, 3, and 4) and that learning is promoted by encouraging children to try out the ideas and strategies they bring with them to school-based learning (Chapter 6). Students in classes that use the new approaches do not begin learning mathematics by sitting at desks and only doing computational problems. Rather, they are encouraged to explore their own knowledge and to invent strategies for solving problems and to discuss with others why their strategies work or do not work.

    A key aspect of the new ways of teaching science is to focus on helping students overcome deeply rooted misconceptions that interfere with learning. Especially in people&rsquos knowledge of the physical, it is clear that prior knowledge, constructed out of personal experiences and observations&mdash such as the conception that heavy objects fall faster than light objects&mdashcan conflict with new learning. Casual observations are useful for explaining why a rock falls faster than a leaf, but they can lead to misconceptions that are difficult to overcome. Misconceptions, however, are also the starting point for new approaches to teaching scientific thinking. By probing students&rsquo beliefs and helping them develop ways to resolve conflicting views, teachers can guide students to construct coherent and broad understandings of scientific concepts. This and other new approaches are major break-

    throughs in teaching science. Students can often answer fact-based questions on tests that imply understanding, but misconceptions will surface as the students are questioned about scientific concepts.

    Chèche Konnen (&ldquosearch for knowledge&rdquo in Haitian Creole) was presented as an example of new approaches to science learning for grade school children. The approach focuses upon students&rsquo personal knowledge as the foundations of sense-making. Further, the approach emphasizes the role of the specialized functions of language, including the students&rsquo own language for communication when it is other than English the role of language in developing skills of how to &ldquoargue&rdquo the scientific &ldquoevidence&rdquo they arrive at the role of dialogue in sharing information and learning from others and finally, how the specialized, scientific language of the subject matter, including technical terms and definitions, promote deep understanding of the concepts.

    Teaching history for depth of understanding has generated new approaches that recognize that students need to learn about the assumptions any historian makes for connecting events and schemes into a narrative. The process involves learning that any historical account is a history and not the history. A core concept guiding history learning is how to determine, from all of the events possible to enumerate, the ones to single out as significant. The &ldquorules for determining historical significance&rdquo become a lightening rod for class discussions in one innovative approach to teaching history. Through this process, students learn to understand the interpretative nature of history and to understand history as an evidentiary form of knowledge. Such an approach runs counter to the image of history as clusters of fixed names and dates that students need to memorize. As with the Chèche Konnen example of science learning, mastering the concepts of historical analysis, developing an evidentiary base, and debating the evidence all become tools in the history toolbox that students carry with them to analyze and solve new problems.

    Expert Teachers

    Expert teachers know the structure of the knowledge in their disciplines. This knowledge provides them with cognitive roadmaps to guide the assignments they give students, the assessments they use to gauge student progress, and the questions they ask in the give-and-take of classroom life. Expert teachers are sensitive to the aspects of the subject matter that are especially difficult and easy for students to grasp: they know the conceptual barriers that are likely to hinder learning, so they watch for these tell-tale signs of students&rsquo misconceptions. In this way, both students&rsquo prior knowledge and teachers&rsquo knowledge of subject content become critical components of learners&rsquo growth.


    Zaključak

    It has often been said that the brain studies itself. This means that humans are uniquely capable of using our most sophisticated organ to understand our most sophisticated organ. Breakthroughs in the study of the brain and nervous system are among the most exciting discoveries in all of psychology. In the future, research linking neural activity to complex, real world attitudes and behavior will help us to understand human psychology and better intervene in it to help people.


    I n the recent Cerebrum article, “Equal ≠ The Same: Sex Differences in the Human Brain,” author Larry Cahill offers his perspective on the nature of sex differences in brain and behavior, and what he considers to be a “counter-reaction” to such research by “anti-sex difference” investigators operating from the “deeply ingrained, implicit, false assumption that if men and women are equal, then men and women must be the same.” [ 1 ] We welcome this opportunity to correct some of the misapprehensions and mischaracterizations in this account, and present a more nuanced view of the relations among sex, brain, and gender.

    Like Cahill and many others, we welcome more active research on females in basic animal neuroscience. We strongly believe that this is necessary to ensure that basic research is relevant to all humans. We are concerned, though, that one mistake, treating males as the norm, will be replaced with another namely, treating males and females as two distinct entities. Relatedly, we all believe, like Cahill, that sex matters that is, that genetic and gonadal sex can influence brain development and function at every level, that useful information may arise from investigating such processes, and that this may be especially critical in understanding pathological development. Indeed, numerous explicit statements to this effect can be found in our work. [ 2 , 3-5 ]

    Moreover, Joel’s lab empirically investigates such phenomena, [ 6 ] and Rippon, Jordan-Young, Kaiser and Fine [ 7 ] recently made extensive recommendations in Granice u ljudskoj neuronauci as to best practice methods, analysis, and interpretation in sex/gender neuroscience. We were therefore surprised to find ourselves characterized as “anti-sex difference” researchers. We are neither “for” nor “against” sex differences (or sex similarities, for that matter) focusing only on similarities or differences is misleading. We need to develop a new framework for thinking of the relation between sex, brain, and gender that better fits current knowledge, and that takes into account distributions, changes, overlap, variance, and most of all, context.

    Thus, a critical point that is absent in Cahill’s article is that the effects of sex on the brain can be opposite under different conditions. T hat is, what is typical in one sex under some conditions may be typical in the other sex under other conditions. Moreover, the specific interactions between sex and other factors (environmental, developmental, genetic) are different for different brain regions, and are not necessarily stable over time. As a result, the brains of women and men each comprise a unique, ever-changing ‘mosaic’ of features, some of which may be more typical in males and some of which may be more typical in females. 8 Thus brains, in contrast to genitals, do not come in distinct, fixed male or female forms.

    In contrast, the metaphor Cahill uses reflects a common assumption [ 9 ] that the average differences between women and men in the brain as well as in traits, attitudes, interests, roles, skills, cognitive, and emotional abilities and personality characteristics add up to create two distinct systems:

    “claiming that there are no reliable sex differences on the basis of analyzing isolated functions is rather like concluding, upon careful examination of the glass, tires, pistons, brakes, and so forth, that there are few meaningful differences between a Volvo and a Corvette.”

    But sex differences in brain and gender are very different from differences between car brands and between female and male genitals. A car with Corvette tires will almost certainly also have Corvette pistons, brakes, and glass (but not Volvo pistons or brakes), just like a person with a womb will almost certainly also have a vagina, clitoris, and labia (but no penis or scrotum). By contrast, knowing that a person has a ‘masculine’ mental rotation score, say, tells you very little about whether they will be masculine or feminine in other aspects of gender, because each person has a unique array of gender characteristics. Would we classify cars into Volvos and Corvettes if each car had a unique combination of glass, tires, pistons, brakes, and so on from both the Volvo and the Corvette factories?

    Moreover, would we classify glass, tires, pistons, brakes, etc. as being of Volvo or Corvette origin if engines of Volvos changed form to become powerfully Corvette-like under some conditions, and trunks of Corvettes changed to become more spacious, depending on the specific social context in which the car found itself? Or if, in some social contexts and countries, the pistons of Volvos differed quite significantly from those of Corvettes, but in other circumstances or countries they were the same? This clearly never happens with car parts or genitals, but has been repeatedly demonstrated for gendered behaviors [ 10 ] and brain structure. [ 11 ]

    Carothers and Reis’s taxonomic analysis of gender, which Cahill cites, demonstrated exactly this distinction. [ 12 ] Thus, they did indeed find categorical differences between the sexes for highly sex-stereotyped activities (like playing golf and wearing make-up). Yet, these were specifically selected to demonstrate the validity of their taxonomic methods. [1] To be precise, heterosexual, midwestern American undergraduates were asked to identify things that women versus men “typically enjoyed during their free time.” Validity testing in a second similar group winnowed the list of 129 items down to 28. In the larger sample—again heterosexual, Midwestern U.S. college students—10 of these 28 showed large sex differences (d>1), confirming that taxometric procedures mogao effectively detect taxa in gender-related constructs. [12] What Cahill fails to mention, however, is that for virtually all of the drugo gendered characteristics analyzed (covering such domains as sexual attitudes and behaviors, care orientation, science inclination, and Big Five personality traits), the researchers drew precisely the opposite conclusion. “[A]lthough there are average differences between men and women, these differences do not support the idea that ‘men are like this, women are like that.’ ” Rather:

    [T]hese sex differences are better understood as individual differences that vary in magnitude from one attribute to another rather than as a suite of common differences that follow from a person’s sex.” [ 13 ]

    So human brains and behaviors do not come in two distinct forms? What about the relations between the two? Can we relate behavioral differences to structural differences, as Ingalhalikarand colleagues [ 14 ] did in the PNAS paper Cahill cites ? This study reported average sex differences in brain connectivity and speculated that these connectivity differences were related to average differences found in another study on the same participants in several behavioral measures (e.g., executive control, memory, reasoning, spatial processing, sensorimotor skills, and social cognition). Yet the researchers did not use their data to directly test their hypothesis that sex differences in brain connectivity were related to behavioral sex differences. An alternative possibility is that the observed connectivity differences have no functional implications, perhaps, for example, serving to offset average brain size differences between the sexes. [ 15 ] Indeed, this alternative hypothesis arises directly from de Vries’ claim, cited by Cahill, that sex differences in the brain sometimes serve to compensate for other differences (rather than to create further differences), thus making the two sexes more similar. [ 16 ]

    It matters that women and men are not like Volvos and Corvettes. It matters scientifically, with respect to research models, methods, analysis, and interpretation. The elucidation of these issues has been a primary goal of our work: for example, in relation to functional neuroimaging, [ 4 , 7 , 17-19 ] brain structure, [ 11 ] prenatal hormonal influences on the brain, [ 2 ] and sex differences in psychopathology. [ 5 , 20 ] But it is also a matter of importance to the general public that women and men are not like Volvos and Corvettes. There is growing evidence that thinking about the brains and behavior of males and females in this inappropriately categorical way has psychosocial effects that serve to sustain the gender status quo [ for review see 21 , see also 22 for an analysis of media and social media commentary arising from Ingalhalikar et al.’s PNAS article and press release ] . People look to Volvos for a safe car for the family, and to Corvettes for status and power. Categorical thinking about gender reinforces the idea that similar divisions in social roles for women and men are appropriate, fixed, natural, and inevitable. We are therefore grateful for this opportunity to indicate just how misleading this is as a metaphor.

    We appreciate fears on the part of neuroscientists that blanket antipathy towards the investigation of sex influences on the brain could stifle research opportunities. As we hope is now clear, we are all for investigating sex, gender, and their interlacements. However, the research models neuroscientists (and others) use should be appropriate to the phenomena in question.

    Author affiliations

    • Cordelia Fine: Melbourne School of Psychological Sciences, Melbourne Business School & Centre for Ethical Leadership, University of Melbourne
    • Daphna Joel: School of Psychological Sciences & Sagol School of Neuroscience, Tel-Aviv University
    • Rebecca Jordan-Young: Department of Women’s, Gender & Sexuality Studies, Barnard College, Columbia University in the City of New York
    • Anelis Kaiser: Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern
    • Gina Rippon: Aston Brain Centre, School of Life & Health Sciences (Psychology), Aston University

    T he article is the response I had been waiting for, from the group I was expecting it from. I am glad to know they value my opinion enough to have read my article. Nothing in their response undermines anything I wrote, so I stand by my article completely. I encourage the reader to read and critically evaluate both articles, and form their own opinions.

    In my view the most important point for the reader to be aware of regarding the sex difference issue is that, since the time of my Cerebrum article, the National Institutes of Health has—for the first time—announced that all research they support will soon be required to carefully address potential sex differences. 1 This is a remarkable development for research and medicine, and one that I, and everyone who appreciates the importance of sex influences, have been working toward for years. I hope Fine et al appreciate this development as well, especially as women, who will be the ones to disproportionately benefit from it.

    Reference

    1. Cahill, L. Equal ≠ the same: Sex differences in the human brain. Cerebrum, 2014.

    2. Jordan-Young, R., Brain storm: The flaws in the science of sex differences2010, Cambridge, MA: Harvard University Press.

    3. Fine, C., Delusions of gender: How our minds, society, and neurosexism create difference2010, New York: WW Norton.

    4. Fine, C., Is there neurosexism in functional neuroimaging investigations of sex differences? Neuroethics, 2013. 6(2): p. 369-409.

    5. Joel, D. and R. Yankelevitch‐Yahav, Reconceptualizing sex, brain and psychopathology: Interaction, interaction, interaction. British journal of pharmacology, 2014.

    6. Flaisher-Grinberg, S., et al., Ovarian hormones modulate compulsive’lever-pressing in female rats. Hormones and Behavior, 2009. 55(2): p. 356-365.

    7. Rippon, G., et al., Recommendations for sex/gender neuroimaging research: key principles and implications for research design, analysis, and interpretation. Frontiers in Human Neuroscience, 2014. 8: p. 650.

    8. Blackless, M., et al., How sexually dimorphic are we? Review and synthesis. American Journal of Human Biology, 2000. 12(2): p. 151-166.

    9. Haslam, N., L. Rothschild, and D. Ernst, Essentialist beliefs about social categories. British Journal of Social Psychology, 2000. 39: p. 113-127.

    10. Hyde, J.S., Gender Similarities and Differences. Annual Review of Psychology, 2014. 65(1): p. 373-398.

    11. Joel, D., Male or female? Brains are intersex. Frontiers in Integrative Neuroscience, 2011. 5(Article 57).

    12. Carothers, B.J. and H.T. Reis, Men and women are from Earth: Examining the latent structure of gender. Journal of Personality and Social Psychology, 2013. 104(2): p. 385-407.

    13. Reis, H.T. and B.J. Carothers, Black and White or Shades of Gray: Are Gender Differences Categorical or Dimensional? Current Directions in Psychological Science, 2014. 23(1): p. 19-26.

    14. Ingalhalikar, M., et al., Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences, 2014. 111(2): p. 823-828.

    15. Jäncke, L., et al., Brain size, sex, and the aging brain. Human Brain Mapping, 2014.

    16. de Vries, G.J. and P. Sodersten, Sex differences in the brain: The relation between structure and function. Hormones and Behavior, 2009. 55(5): p. 589-596.

    17. Fine, C., From scanner to sound bite: Issues in interpreting and reporting sex differences in the brain. Current Directions in Psychological Science, 2010. 19(5): p. 280-283.

    18. Fine, C., Neurosexism in functional neuroimaging: From scanner to pseudo-science to psyche, u The Sage Handbook of Gender and Psychology, M. Ryan and N. Branscombe, Editors. 2013, Sage: Thousand Oaks, CA. str. 45-60.

    19. Kaiser, A., et al., On sex/gender related similarities and differences in fMRI language research. Brain Research Reviews, 2009. 61(2): p. 49-59.

    20. Cheslack-Postava, K. and R.M. Jordan-Young, Autism spectrum disorders: Toward a gendered embodiment model. Social Science & Medicine, 2012. 74(11): p. 1667-1674.

    21. Fine, C., Explaining, or sustaining, the status quo? The potentially self-fulfilling effects of ‘hardwired’ accounts of sex differences. Neuroethics, 2012. 5(3): p. 285-294.

    22. O’Connor, C. and H. Joffe, Gender on the Brain: A Case Study of Science Communication in the New Media Environment. PLoS One, 2014. 9(10): p. e110830.

    Referenca
    to Cahill response

    1. Clayton, J and Collins, F (2014) NIH to balance sex in cell and animal studies. Priroda, 509: 283.


    The Control Network: How to Create Achievable Goals

    Although we can execute many everyday activities on autopilot, we also have a remarkable capacity to override our habits and impulses. We can decide to sit in a different spot at the 1,001st staff meeting even after sitting in the same place for 1,000 meetings prior. If we believe it will help us get a promotion, we can choose to work in a remote and dreary corner of the world away from loved ones. Whereas other animals react to only immediate needs, we can pursue loftier goals—like capturing a larger share of the Latin American market and flying to the moon—even when they conflict with our immediate needs or contradict our past behavior patterns.

    The control network is responsible for this flexibility. It aligns our brain activity and our behavior with our goals. Much as a CEO might reallocate a firm’s resources from a failing market to a growth market, the control network shifts blood flow away from brain regions emitting competing or inappropriate signals and toward regions that help us achieve our objectives. CEOs may review and reshuffle resources each budget cycle the control network does this constantly as our circumstances change and our needs and aspirations evolve.

    We’ve purposely arranged this article with the default network first and the control network last, as bookends. Research has shown that they’re essentially countervailing forces: The more engaged the control network is in distributing resources to achieve goals rooted in the real world, the less engaged the default network is in detaching from the real world and imagining alternative realities, and vice versa.

    In a sense the control network is tasked with policing sve the brain’s other networks. By suppressing the default network, the control network ensures that our minds can anchor themselves in the present moment and won’t wander stalno. By restraining the reward network, it helps us resist the lure of costly indulgences and check the impulse to act on immediate needs ($5 today) at the expense of more-important, long-term objectives ($10 a week from now). By regulating the affect network, it reins in our emotional reactions and ensures that our actions are not dictated solely by fleeting feelings or hunches.

    The control network also helps us deal with our many competing goals. In a world of pinging e-mail, buzzing phones, and people bidding for our time, we need the ability to prioritize the most important tasks and shut out all the other distractions.

    Of course, it’s not quite that simple. Complete absorption in a current task is as fraught a state of mind as complete daydreaming or impulsiveness. It can prevent us from detecting environmental changes that could help us. The soccer player so intent on getting off a winning shot may not notice a wide-open teammate who could score more easily if he were passed the ball. The player may also fail to realize that time is running out—ignoring an entirely separate and more critical priority because he’s so focused on shooting. It’s a tricky attention-management challenge the control network deals with. On one hand, it needs to prevent distractions from every shiny object thrown in front of us. On the other hand, it needs to let us respond when one of those shiny objects is an opportunity or an important demand.

    To pursue these twin objectives concurrently, the control network hedges. It biases the brain to notice and respond to information related to both our current task and other outstanding goals. (Not just any stimuli, only those related to goals.) To keep us agile, the control network aims for the sweet spot: It tilts the scales in favor of actions compatible with our goals but not to such an extent that our resources are overcommitted. This safeguards our flexibility in unpredictable environments, but it also predisposes us to distraction. Not every player sprinting across the field is open for a pass and better positioned for a shot, and we shouldn’t have to look at the clock every few seconds to make sure we have time to shoot.

    Recent discoveries about the control network reinforce what the best leaders say about outexecuting the competition through focus: Companies should limit the number of strategic initiatives they undertake to a manageable few. Asking people to pursue numerous goals fragments their attention and makes engaging in any mindful work difficult. With too many objectives to maintain and monitor, the control network spreads its limited resources thin, and we struggle to give enough attention to any of our responsibilities.

    Some people believe that juggling multiple projects improves their mental agility, but emerging evidence casts doubt on such assumptions. One recent study by Eyal Ophir, Clifford Nass, and Anthony Wagner revealed that the control networks of individuals who chronically multitasked failed to allocate resources in a way that matched their priorities and showed that these people struggled to filter out irrelevant information. They struggled to ne think about the tasks they were ne doing. What good is thinking about the call you owe a client or the e-mails and tweets pinging on your phone while you’re discussing corporate strategy with the CFO? Not only are those goals unconnected to your conversation, but the current moment is completely void of opportunities to further their pursuit.

    Attesting to the ease with which tasks that we’re not doing hijack our attention, an overwhelming majority of 40 senior executives we recently queried reported that their “off task” moments almost always involve thoughts of unfinished business. We’re blessed with brains that can prioritize unfulfilled goals. But we’re also cursed with them.

    E-mails, meetings, texts, tweets, phone calls, news—the unstructured, continuous, fractured nature of modern work is a tremendous burden on the control network and consumes a huge amount of the brain’s energy. The resulting mental fatigue takes its toll in the form of mistakes, shallow thinking, and impaired self-regulation. When overwhelmed, the control network loses the proverbial reins, and our behavior is driven by immediate, situational cues instead of shaped with our priorities in mind. We go on autopilot, and our brains fall back to simply responding to whatever is in front of us, regardless of its importance.

    Success as a leader requires, first and foremost, creating just a few clear priorities and gathering the courage to eliminate or outsource less important tasks and goals. Executives must also reset their expectations for what constitutes a viable workload, basing them on a realistic understanding of what their brains can handle. It’s less than what most of us try to accomplish.

    An understanding of the control network also should guide our thinking about lean operations. Taking a “lean” approach should not mean saddling too few employees with too many tasks. The more leaders ask their workers to focus on, the worse those employees will perform. Though in the short term it’s cost-effective to keep staffs thin, brain science suggests many modern workers have already been pushed far beyond the point where their goals and tasks are manageable. Their work is already suffering. After an explosion of articles on neuroimaging research in top journals in the early 2000s (what some scholars have termed neuroscience’s “Wild West”), critics were quick to dub the field “the new phrenology,” a reference to Franz Joseph Gall’s 18th-century pseudoscience, which mapped psychological faculties onto different brain regions. As neuroscience becomes more sophisticated, however, it promises to become a scientifically valid version of phrenology, albeit one with far more complexity and nuance.

    Caution in interpretation is required if we’re to overcome the sins of the past decade. Still, there has never been a more exciting time for neuroscience, and many insights for business are forthcoming. For instance, a new method called hyperscanning—which allows scientists to see the brains of two people who are interacting—is shedding light on the keys to effective collaboration and communication. Innovative research on “brain genomics” is linking brain function to genetics, illuminating people’s predisposition to traits ranging from intelligence to impulsivity. Finally, neuroscientists are trying to understand how functions such as decision making, social skill, cognitive control, and emotion change across a life span. These advances set the stage for a hugely productive dialogue between science and business, which an informed population of consumers will make even more effective.


    Pogledajte video: EARL NAJTINGEJL OTKRIVA TAJNU KNJIGE Misli i obogati se NAPOLEONA HILA (Februar 2023).